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Electromagnetic models and inversion techniques for multiple UXO 

discrimination 
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Jin Au Kong, Bae-Ian Wu, Beijia Zhang, Hongsheng Chen 

 

Research Laboratory of Electronics, Massachusetts Institute of Technology, 
Cambridge, MA 02139, USA 

 

Abstract 

 
Recovery of buried unexploded ordnance (UXO) is very slow and expensive due 

to the high false alarm rate created by clutter. Electromagnetic induction (EMI) has 
been shown to be a promising technique for UXO detection and discrimination. We 
use the EMI response of buried targets to identify or classify them. Given that now a 
more complete model of the measurable response of a buried UXO is implemented, 
this study proceeds to demonstrate that EMI responses from UXO and clutter objects 
can be used to identify the objects through the application of Differential Evolution 
(DE), a type of Genetic Algorithm. DE is used to optimize the parameters of the UXO 
fundamental mode model to produce a match between modeled response and the 
measured response of an unknown object. When this optimization procedure is 
applied across a library of models for possible UXO, the correct identity of the 
unknown object can be ascertained because the corresponding library member will 
produce the closest match. Furthermore, responses from clutter objects are shown to 
produce very poor matches to library objects, thus providing a method to discriminate 
UXO from clutter. These optimization experiments are conducted on measurements 
of UXO in air, UXO in air but obscured by clutter fragments, buried UXO, and buried 
UXO obscured by clutter fragments. It is shown that the optimization procedure is 
successful for shallow buried objects obscured by light clutter contributing to roughly 
20 dB SNR, but is limited in applicability towards very deeply buried UXO or those 
in dense clutter environments. The general conclusion forwarded by this work is that 
while increasingly accurate discrimination capabilities can be produced through 
accurate forward modeling and application of robust optimization and learning 
algorithms, the presence of noise and clutter is still of great concern. Minimization or 
filtering of such noise is necessary before field deployable discrimination techniques 
can be realized. 
 
 



I. Introduction 

 
Electromagnetic techniques have a long history of application in remote sensing 

and detection of obscured targets. When a time varying electromagnetic field interacts 
with a conducting body, electric currents will be induced on the target. As an example, 
in a typical EMI response of a metal object to a uniform excitation, the object is a 
permeable sphere with σ = 2×106 S/m, radius a = 0.05 m, and μ = 100×μ0. “I” 
denotes the response that is in phase with the excitation and “Q” denotes the response 
that is in phase quadrature with the excitation. I and Q correspond to the real and 
imaginary parts of the secondary field, respectively. In the geophysics convention, the 
I term is always plotted so that its sign is reversed. The trends and characteristics can 
be more easily understood by examining the high and low frequency limits. At near 
static frequencies, the response is mainly due to the magnetic polarizability of the 
object. The response will align itself with the incident magnetic field and be wholly 
Inphase. If the object were not permeable, very little response would be seen at the 
low frequency end of the EMI spectrum. At the highest frequencies, activity will be 
largely limited to surface currents that generate an opposing response as stated by 
Lenz’s law and again will be entirely Inphase but of opposite sign. At mid-frequencies, 
the finite conductivity of the target provides resistance as volume currents circulate 
within the target in their attempt to oppose changes in the primary field. Therefore, 
the secondary magnetic fields produced by these currents will lag behind the incident 
magnetic field and produce a quadrature response. 
 

II. UXO, Soil, and Sensor Modeling 

 
The goal of reducing false alarms can be addressed by identifying or classifying 

buried objects based on their EMI response. However, to perform such discrimination, 
forward models are needed beforehand to predict the secondary magnetic fields 
produced by targets under various conditions. Many inversion techniques require 
some prior knowledge of the target’s response under specific conditions. Normally, it 
is not financially or logistically feasible to take measurements of UXO or related 
targets for every orientation and position of interest. Therefore, forward models form 
an integral part of inversion research. Furthermore, accurate forward models of UXO 
or similarly shaped metal objects form a critical part of the understanding of their 
response to EMI stimuli. What largely distinguishes the work discussed here from all 
previous forward modeling work is the attention to modeling UXO within realistic 
environments and using real instruments. This complete model consolidates the 
effects of soil and the effect of the relationship between actual secondary EMI fields 
and the measured fields as reported by the sensor. All previous modeling work was 
limited to modeling targets in free space. Accurate modeling of the measured EMI 
response of buried UXO in realistic environments is comprised of three key 
components: the UXO itself, the soil, and the sensor in use. 



 
The spheroidal mode model for UXO is a natural extension of the prior research 

into retrieving spheroidal mode coefficients from data and is similar in structure to the 
fundamental mode model. It must be emphasized that the spheroidal mode model is 
distinct from the spheroid model. The spheroid model is analytical and only models 
spheroids. The spheroidal mode model–though drawn from the analytical framework 
of the magnetic response in the spheroidal coordinate system–is similar to the 
fundamental mode model in that its parameters are obtained from EMI measurement 
data and can model metal objects of any shape provided sufficient measurements are 
available. Whereas the fundamental mode model describes objects using sets of 
magnetic charges, the spheroidal model utilizes the coefficients of the spheroidal 
modes of the target’s response. 
 

III. Inversion through Application of Differential Evolution: 

Identification 

 
Predicting the output of a system given specific input values requires a model that 

follows some basic underlying laws governing the system. This prediction constitutes 
the “forward problem.” Conversely, the “inverse problem” attempts to recover the 
input values when given the response of a system. The forward problem in regards to 
UXO research can be resolved with accurate modeling of UXO objects and the 
environment. Several reliable forward models have been developed and are readily 
available. That aspect of UXO research is relatively mature. However, the inverse 
problem of identifying UXO objects through their EMI responses is a topic currently 
of great interest. There are several approaches to general inverse problems. If the 
system can be described by a set of linear equations, the input parameters can be 
solved when given sufficient output data. If the system is non-linear but characterized 
by a closed form expression, the inverse problem can often be solved through various 
calculation techniques such as the Gauss- Newton algorithm. However, given the 
complexity of the UXO problem where the target is often buried at an unknown 
location, depth, and orientation, no closed form expression can completely describe 
the entirety of the system. 

 
The inverse problem for UXO encompasses two general forms. The first form 

uses the EMI response signal to resolves identity of the target from a library standard, 
representative UXO types. Items whose identities cannot be resolved are then 
considered clutter items. The second form of inversion does not identify particular 
UXO but makes a general discrimination between all UXO targets and clutter. One 
can view the object identification problem as a type of optimization problem. 
Optimization describes a process where one searches for the optimal values of a 
model’s input so that the model’s output will correctly match given data. Cast in 
terms of the UXO problem, optimization requires measuring the EMI response of the 



unknown target in question and comparing this signature to the predicted responses 
from a library of models for possible UXO targets. The input parameters of the 
models are adjusted until the “best” match, as evaluated by an objective function, is 
achieved. The member of the library which produces the closest match with an 
acceptable level of accordance will correspond to the identity of the unknown object. 
There are three basic components of the optimization inversion scheme: the model, 
the search algorithm, and the objective function. Each component has the potential of 
rendering the optimization unsuccessful and must be thoroughly evaluated and tested: 

 
1. The Model: To make the calculation tractable, the model must be 

computationally fast because the optimization process will require many evaluations 
over the course of the search process to find the most optimal input parameters. The 
fundamental mode model and the spheroidal mode model are both analytical models 
which only involve the summation of a finite number of response components, 
represented as magnetic charges or Bjk modes respectively, and do not involve 
inverting large matrices. Therefore, both are comparably fast and suitable for use in 
an optimization scheme. However, as will be discussed, due to the differences in the 
specific implementation structure of each model, the fundamental mode model is 
favored because it can accommodate a faster search method. 

 
2. The Search Algorithm: The process of searching and adjusting the input 

parameters until a good match between modeled response and data is found requires 
multiple evaluations by the model. Any actual buried UXO will be at an unknown 
position and orientation underneath the soil. Therefore the search process involves 
checking combinations of position and orientation–which are the only inputs of the 
fundamental mode model–for each library member until the best match is obtained. 
An exhaustive brute force search would not be feasible even for a relatively fast 
model such as the fundamental mode model. As will be discussed, this study employs 
differential evolution (DE), a type of genetic algorithm, as an effective search strategy. 
However, despite the improvement over a brute force method, DE still requires 
considerable computational time. To counter this deficiency, the DE computation is 
parallelized using Message Passing Protocol (MPI). 

 
3. The Objective Function: Since the optimization procedure searches for the best 

match between model output and measurement data, some quantitative measure of 
“goodness of fit” is required. Normally this measure is an analytical expression for the 
difference between the model output and data. This expression is called the “objective 
function.” We give the description of the weighted, normalized difference used to 
calculate error in this study. 

 
In response to the need for a search algorithm in the optimization scheme, this 

study implemented a differential evolution (DE), a type of genetic algorithm. Genetic 
algorithms describe a family of algorithms which employ evolution strategy 
optimization. This form of optimization is based on the genetic mechanisms and 



evolution in biology. Many possible solutions to the problem of interest are evaluated 
by how well they solve the problem. Good solutions are allowed to remain while poor 
solutions are discarded. This selective process parallels the idea of evolution which 
mandates the “survival of the fittest” for individuals within a population inhabiting a 
hostile environment. Very fit individuals are also likely to have fit offspring in the 
next generation due to passing on favorable genes. The genes of the offspring are 
similar to but slightly modified from the genes of the parents as governed by the 
known genetic mechanisms of crossover and mutation. This slight change has the 
potential of improving the genes which may be passed on to the next generation and 
so on. This process is mirrored in genetic algorithms. An individual is now a solution 
to the problem of interest. The population therefore is a finite collection of possible 
solutions. Instead of a hostile environment determining the likelihood of survival, a 
solution’s “fitness” is measured by how well it solves the problem at hand. Solutions 
are culled when they under perform. “Generation” in computational terms refers to a 
complete cycle of evaluation for all the solutions by the objective function. Instead of 
reproduction, new solutions are generated to be slightly altered versions of the good 
solutions belonging the previous generation. In subsequent generations, these slight 
changes should allow the solutions to converge upon the best possible solution. 
Genetic algorithms have been used to facilitate searches and provide optimal solutions 
to non-linear problems. 

 
Differential evolution is a type of genetic algorithm largely distinguished by its 

use of vector differences of randomly selected population members to perturb the 
current population and produce the subsequent generation. Another aspect of DE is 
that it is very well suited for parallelization since each member of a population can be 
evaluated independently with regards to whether it should be replaced or be allowed 
to remain in the subsequent generation. This flexibility allows for decreased 
calculation time without the loss of the ability to converge on the most optimal 
solution. Like all genetic algorithms, DE is very computationally expensive. Given 
the current state of computing power, inversion is very time consuming unless the DE 
algorithm is parallelized, using such methods as the Message Passing Interface (MPI) 
protocol, and run on a supercomputer. For this investigation, the US Army Research 
Laboratory’s High Performance computing center’s Cray supercomputers with 
MPI-compatible software was used to perform the DE optimization. 

 
The objective function is a measure of how well a proposed solution satisfies the 

problem of interest. Various objective functions have been proposed and used in 
inversion research. For the UXO inversion problem, the objective function must 
compare simulated EMI responses Hx, fm created by a model to measured “data” 
EMI signals Hx, fd where each signal provides a sampling of the secondary magnetic 
field at Nx observation positions indexed by x and Nf frequencies indexed by f. Given 
the variability of the signal’s amplitude across space and frequency, a simple 
difference, normalized by the number of samples, between the two signals offers an 
incomplete picture of how well these two signals correspond. 



 
Signals differences arising stronger signal samplings will dominate the calculated 

error. To demonstrate the inaccuracy of this object function, one can imagine 
obtaining measurements of a UXO at two elevation planes. The upper elevation plane 
would measure weaker signals. Differences between weaker signals would be smaller 
than differences between stronger signals. Therefore, the final calculated error would 
be incorrectly biased towards lower values. To prevent this bias, the difference must 
be point-wise normalized by the magnitude of the data such that the difference at any 
sample point becomes a percentage of the signal at the same sample point. 

 
DE requires multiple, successive evaluations of the forward model. Therefore, it 

is advantageous to select the fastest model of acceptable accuracy. The fundamental 
mode model and the spheroidal mode model are both comparably fast given that both 
compute responses as a sum of a finite number of modes derived from stored values. 
However, the fundamental mode model is implemented in FORTRAN while the 
spheroidal mode model is written in Matlab. This difference is critical due to the lack 
of Matlab-based MPI capabilities at the Army Research Laboratory High Performance 
Computing facility which provided the parallelized processors. Therefore, the 
fundamental mode model is used as the forward model in this portion of the inversion 
study. 

 
It should be noted that the fundamental mode model was derived from GEM-3 

measurements of actual UXO. The values of the magnetic charges which characterize 
the response of an object in this model reflect the units by which the GEM-3 reports 
all measurement data. Any prediction made by the fundamental mode model has the 
same units as all measurements outputted by the GEM-3. Therefore, the application of 
the scaling factor to ensure consistency between forward model and measurements is 
not needed. The scaling factor, however, must be applied whenever a wholly 
analytical forward model, such as the spheroid model, is in use. This scenario 
corresponds to the research into UXO classification. 

 
Because the FORTRAN source code for the fundamental mode model is available, 

DE is written into this code to provide full integration and therefore eliminate any 
associated communication latency which would contribute to a slower performance. 

 
The fundamental mode model was previously shown to provide predictions for 

specific UXO types. Therefore, it may be more accurate to refer to the fundamental 
model as a library of specific UXO models. Of the available UXO types within the 
model, four are selected to form this library and to be used as part of the optimization 
scheme. In each test case, described in the subsequent sections, either only one or 
none of the library members correctly corresponds to the unknown target. For each 
UXO type within the fundamental mode model, only the orientation and position of 
the object is needed as input. Therefore, for each object in the library, DE will recover 
the (x, y, z) position and (θ, φ) orientation that will create the best match to the signal 



from an unknown target. The library object which has the closest match is then taken 
to be the identity of the unknown object. 

 
Given that the search parameters are (x, y, z) and (θ, φ) for each library member, 

each candidate in the population is of vector of length 5. References state a population 
size should be roughly 10 or more times the number of search parameters. The 
forward model will be extended to include soil half space effects. Soil permeability μ 
will form the sixth input parameter into the model. Therefore, for all work presented 
here, a population size of 60 is used. 

 
DE also requires the user to specify the bounds of each search parameters. The 

inclination parameter θ which specifies the angle from the positive z axis to the x − y 
plane is allowed to vary from 0 to π. The rotation angle, φ, varies from 0 to 2π. In the 
simulation, x and y spans from -0.3 m to 0.3 m. The sensor is located on the z = 0 
plane or above. The depth of the target’s center, z, spans from -0.1 m to -0.7 m. 
Candidate solutions whose parameters create a non-physical possibility, such as the 
UXO intersecting the measurement plane, are explicitly rejected. These parameters 
are first initialized randomly with values drawn from their permitted ranges. 

 
A larger F indicates a more aggressive change and produces a faster but less 

robust solver. A smaller F indicates a more gradual change producing a slower but 
more robust solver. Through trial and error, it was found that the use of F = 0.4 
provides the most consistent, correct convergence. Some literatures suggest using 
crossover and mutation, “M”, to complement the differential change. While this study 
implemented these additions, no appreciable difference was observed when these 
features were added to DE. Therefore, all results were created without the use of 
crossover and mutation. 

 
The population size in use determines the number of processors MPI divides the 

work across. Each processor is assigned to one population member so 60 processors 
are used in parallel. In addition, one more processor must be used for the controlling 
and aggregating process. Since DE is implemented in FORTRAN and integrated into 
the source code of the fundamental mode model, the MPI FORTRAN commands are 
likewise inserted into this code. 

 
The following inversion results present four basic cases, each progressively more 

difficult: 
1. Inversion for a target in free space; 
2. Inversion for a buried target; 
3. Inversion for a target underneath clutter in free space; 
4. Inversion for a buried target underneath clutter; 
In each case, models are first used to produce synthetic data. This synthetic data 

is then used by the inversion algorithm to determine the identity of the target and 
ascertain any limitations on accuracy of the inversion. After the synthetic data study, 



corresponding measurements of the target are taken and processed by the inversion 
algorithm in a likewise manner. 

 
As the first test for a target in free space, only synthetic data is used. The model’s 

output is matched with outputs previously generated. This test allows the verification 
of the capability of the DE algorithm and the selected objective function. In all tests, 
the measurements and calculated responses were on a 7 by 7 grid of 10cm spacing. 
For synthetic data, the plane was 0.35 meters above the center of the object. The 
synthetic data are generated by the fundamental mode model with input parameters x 
= 0.1m, y = 0.1m, z = 0.35m, θ = 3π/4, and φ = π/2. 

 
For this test, the DE algorithm uses 50 members in the population and runs for 

100 generations. The true and recovered position and orientation values for object 
ATC188 deviates roughly 1 cm away from the true position. Given that this object is 
more than half a meter in length, this deviation is comparatively small. One can also 
examine the convergence of the DE algorithm through successive generations. 

 
The F value of 0.4 used in the previous example provides the most suitable 

balance between correct convergence and speed. A faster convergence would mean 
fewer generations and thus faster running times. However, increasing the F value can 
lead to improper convergence where the optimized (x, y, z, θ, φ) values are much less 
accurate. This inaccuracy and improper convergence can be shown by examining 
objective function. Here, F = 0.7. While DE converges rapidly, it converges on a 
solution which has a much higher error than that created when F = 0.4. 

 
The above analysis can be extended to a large range of targets. First, the 

fundamental mode forward model generates responses for the four members of the 
library. Using these modeled response, DE recovers the orientation and location of 
each member of the library that will produce the best match to the data. In addition to 
confirming the applicability of DE and the selected objective function, this test will 
also specify the lower bound on error. Any error will be inherent to the DE method 
and will not be due to any inaccuracy of the forward model or measurement noise. As 
stated earlier, this error can be thought of as a percentage of the mean of the overall 
response. The rows correspond to data generated from the model for each particular 
UXO. The columns correspond to the candidates in the library. The diagonal values 
correspond to the correct match between object producing the synthetic data and the 
library member. Therefore, the low error values on the diagonal are the lowest in their 
respective row and demonstrate that identification of UXO is achievable with DE. 

 
As a first step in using real data, DE is used to match measurements of a known 

object with its corresponding model. Measurements are taken of object ATC188 in 
free space on a 7 by 7 grid with 10cm spacing. The measurement plane is 15 cm 
above the nearest point in the object. The object is roughly at the center of the grid 
and has a θ value of about π/2. Given the impreciseness of measuring the UXO 



position, the object’s exact position and orientation are unknown and must be 
retrieved as part of the inversion process. One can show the goodness of fit between 
the output of the optimized forward model for ATC188 and measured data. This 
match produces an error of 0.08 as measured by the objective function. 

 
The previous DE inversion results are for objects measured in a laboratory 

environment where free space is a good approximation for the background medium. 
Inversion of a UXO buried in soil is considerably more difficult due to the 
environmental noise. And as shown previously, a half space will create an offset in 
the Inphase portion of the EMI response which must be taken into account during the 
inversion process. 

 
Accounting for soil offset within the inversion process may be done in two ways. 

The first method involves removing the effect of the soil offset from the data prior to 
inversion. This may be done by taking measurements of nearby soil that do not 
contain UXO targets and then subtracting that data from the measurements of the 
buried UXO. This technique, however, requires access to “uncontaminated” soil that 
has the same material properties as the soil containing UXO. Furthermore, the 
unevenness of the surface of the soil will create varying distances between sensor and 
the surface. In measurements this variation will manifest itself as noise. Therefore, a 
smooth soil surface is desired in all measurement. While these conditions can be 
reproduced in controlled environments, the same cannot be said of all real UXO 
recovery scenarios. 

 
The second method to account for the present of soil is to invert for the soil 

properties within the overall UXO inversion scheme. Much like how DE recovers an 
object’s position and orientation in the optimization process, DE can also recover a 
soil’s permeability value. A half space response can be added to the fundamental 
mode forward model. Given known transmitter characteristics and elevation, this half 
space response can be determined by a single μ parameter. Therefore, as part of the 
optimization process, μ must be explicitly recovered along with (x, y, z) and (θ, φ). 
For the analysis of synthetic data created by modeling UXO in permeable 
backgrounds, the second method to account for soil is applied. 
 

IV. Effect of Clutter on Differential Evolution Inversion 

 
Another large contributor to noise is the presence of very small diffuse metal 

clutter objects, often very near the surface of the soil. While these clutter items are 
much smaller than the large discrete clutter, small diffuse clutter may still create a 
very strong EMI responses when the sensor passes above. Therefore, the impact of 
diffuse clutter pieces on the overall EMI response of buried UXO must be taken into 
account. This study first examines the effect of modeled small clutter in the inversion 
of synthetic data before proceeding to measurements of UXO overlaid with clutter. 



 
Small pieces of clutter can be modeled as dipoles and their combined response 

can be superimposed onto a UXO forward model prediction of the secondary field. 
This superposition creates a model for a UXO obscured by clutter. The modeled 
clutter is comprised of 20 dipoles, characterized by a magnetic polarizability matrix of 
a metal sphere in a uniform field. These dipoles are randomly dispersed over an area 
of 0.6 by 0.6 meters and a depth of up to 0.5 meters, corresponding to the allowable 
range for the position of the modeled UXO target. The spheres ranged in size from 
0.5cm to 2cm and have material properties equal to either typical steel (μ_r = 100 

with σ = 2 ・ 106 S/m) or typical aluminum (μ_r = 1 with σ = 2 ・ 107 S/m). The 

presence of these spheres creates a level of noise that is comparable to about 19dB 
SNR. 

 
The 5 parameter DE optimization is used to recover (x, y, z, θ, φ) for each library 

member. DE matches the forward models to the noise corrupted signatures of the 
targets, identifying the best matching object amongst the candidates in the library. 
This inversion uses a 50 member population, running for 100 generations. The correct 
library member still produces the lowest error in each row. However, as one might 
expect, the errors are larger than in previous examples where no clutter was present in 
the synthetic data. 
 

V. Inversion through Application of Machine Learning: Classification 

 
While DE inversion is shown to be capable of recovering the identity of buried 

targets when given a library of candidates, that technique is hampered by the 
computational requirements. Despite use of parallelization and access to 
supercomputers, processing requires at least a few hours. Given current computing 
limitations, DE is therefore not a suitable method for real time, on-site inversion. 
While computational power is steadily increasing with time, there is always 
motivation to obtain a faster solution that may be obtained within the confines of the 
present computing capability. Furthermore, the DE method requires compiling a 
library of specific possible objects and has difficulty generalizing for UXO objects not 
included in the library because the optimization procedure produces similar levels for 
goodness of fit between disparate objects. A UXO not in the library would go 
unrecognized. Therefore, an alternative method to pursue is to discriminate all UXO 
from clutter generically, as opposed to identifying particular UXO or UXO types. The 
inversion problem can be considered as a classification problem: given the EMI 
response of an unknown object, one must classify the object as either a UXO or a 
piece of clutter. 

 
To form such a discriminator, several topics must be investigated: 
 



1. What characteristics distinguish UXO from clutter objects? The most basic 
question one can ask is how UXO can be physically distinguished from clutter objects. 
To that end, the following section will discuss four basic physical characteristics of 
UXO not found in typical clutter. 

 
2. How are these physical characteristic represented in the UXO’s EMI responses? 

The physical properties of objects dictate their corresponding EMI response. 
Therefore, it may be possible to find distinguishable traits or features within these 
EMI responses that relate to the physical nature of the target.  

 
3. What is the relationship between these features and the physical characteristics 

of the object? If it is possible to derive distinguishable features of EMI responses 
which relate to the physical nature of the object, then the next objective would be to 
decipher such a relationship.  

 
One particular machine learning method, support vector machines, will be 

introduced and discussed. Once the relationship between Bjk values, characteristics of 
the target which may be found through the corresponding EMI response, and the 
physical nature of the targets is known, classification would only require examining 
the Bjk values of any new target to determine if the object physically is more similar 
to UXO or to clutter. As discussed earlier, Bjk values may be recovered from any 
target given enough EMI measurements. Therefore, this method has the potential to 
classify objects in a real time, on-site process when enough measurement data of the 
buried target are taken. Therefore, this method has several distinct advantages over 
DE inversion and warrants investigation. 
 

VI. Determining Clutter and UXO characteristics 

 
To perform discrimination between UXO and clutter, it is necessary to ask what 

physical characteristics distinguish clutter objects from UXO targets. The earlier 
discussion on DE inversion included examples with larger clutter objects and sheets 
of very small diffuse clutter pieces. Large clutter pieces can possibly be mistaken for 
UXO while small diffuse clutters largely contribute noise to the measured EMI 
response. Figure 1 shows clutter pieces of various sizes that were recovered from 
UXO sites. Note both the shape and size of these clutter objects. The largest is around 
10cm. The UXO shown in Figure 2 is around 80cm. It is elongated and has a general 
body of revolution shape. From such inspections, one can decided upon several basic 
key physical features to distinguish UXO from clutter: 



 
Figure 1: Large discrete clutter objects recovered from UXO sites. Photograph courtesy of 

CRREL. 

 
1. Body of Revolution (BOR): UXO are almost always a BOR. Even the presence 

of fins or other small deviations on a UXO does not affect the response of the object 
to the extent that one is able to distinguish it from true BOR objects. In contrast, 
clutter can have any random shape. 

 
2. Size: Field workers involved in UXO cleanup are particularly interested in 

distinguishing larger objects from relatively smaller clutter items. These clutter items 
can have a strong EMI response if they are buried at shallow depths which is a 
common scenario. Since the strength of the object’s response is a poor indication of 
the object’s size, more sophisticated discrimination processing is necessary to avoid 
the costly task of digging up these clutter objects. 

 
3. Homogeneity: UXO are usually composed of a number of different materials 

while clutter, often fragments and casings from exploded ordnances, are often 
homogeneous.  

 
Realistic obstacles to successful discrimination must be considered when 

developing any practical classification method. The classification must be general 
enough to be applied to a wide range of possible objects since there is a substantial 



range of possible clutter items and UXO. The classification must be robust enough to 
be minimally affected by sensor and environmental noise. Furthermore, for real time 
application, the classification must be fast. All of these points are addressed in this 
research. 
 

 

Figure 2: Typical UXO object. Photograph courtesy of CRREL 

 
 
 

VII. Selection of Feature Vector: Distinguishable Parameters of EMI 

Responses 

 
While the DE inversion study uses the EMI response of objects directly, these 

responses are highly dependent on target’s orientation, location, and sensor in use. 



One would like to find features of the EMI response which only relate to the physical 
nature of the object. These features may offer clues to the object’s generic 
characteristics, such as size, shape, and symmetry, which may strongly indicate 
whether the object is a UXO or clutter. One such feature came to light as the result of 
previous work in developing the spheroidal mode forward model within the 
spheroidal coordinate system. As discussed, within this coordinate system, the 
excitation and response of a UXO or any other object can be described in terms of 
scalar spheroidal modes consisting of associated Legendre functions. The spheroidal 
response modes each have a coefficient Bjk which correspond to the kth mode of the 
spheroidal response due to the jth mode of the spheroidal excitation. The Bjk have 
been proven to be unique properties of an object in the sense that objects producing 
different scattered fields must have different Bjk. For a coordinate system aligned and 
centered on the target, Bjk are completely independent of the excitation, orientation, 
and location of the object. Thus Bjk values only depend on the physical properties of 
the object. Consequently, these Bjk coefficients, which can be recovered from the 
measured signal, are appropriate inputs into classification algorithms. 
 
Methodology 
 

The study of using machine learning algorithms to infer an object’s physical 
properties from associated Bjk values of their response has four major steps to be 
discussed in the subsequent sections: 

 
1. Creation of Training Data: SVM requires the Bjk values of a large set of 

representative objects to form the training data. A large set is required to ensure that 
the trained SVM can generalize for all objects one may encounter. A forward model 
must be used to create this training data because is not normally possible to find and 
measure enough objects to create training data composed solely of real targets. Of the 
forward models available, the spheroid model is most suitable for the creation of the 
training data because it can predict the response of any arbitrary shaped spheroid 
target of any σ and μ value. This flexibility ensures the training data will be broad and 
encompass many dissimilarly shaped objects. 

 
2. Creation of Test Data: Unlike training data, test data need not be numerous and 

may be taken from forward models or from measurements. Synthetic test data, from 
forward models, may also include additive noise factors or other uncertainties which 
model the noise seen in measurement data. 

 
3. Obtaining Bjk Values: All synthetic data and measurement data are comprised 

of magnetic fields at various sensor locations. To form the appropriate inputs into the 
learning machines, the Bjk values pertaining to the target must be extracted from 
these magnetic fields. 

 
4. Examining Accuracy of Trained Learning Machines: Once the Bjk values for 



the training data are obtained, the learning machines can be trained. Their level of 
error in classifying the test data will determine the ability of the learning machines to 
distinguish between objects with qualities similar to UXO from those with qualities 
unlike UXO. The effect of noise on classification accuracy is also investigated. 
 
Object Modeling and Composition 

 
This investigation uses three different object types. First, the simplest object is a 

single spheroid as shown in Figure 3(a). The spheroid has two possible permeability 

and conductivity values: either μ_r = 100 with σ = 2 ・ 106 S/m or μ_r = 1 with σ = 

2 ・ 107 S/m. These values approximate steel and aluminum, two metals commonly 

present in UXO and clutter. The elongation of each spheroid, the ratio of major axis 
length to minor axis length, is taken from a uniform distribution ranging from 0.1 to 4. 
The volume is likewise random and uniformly distributed, ranging from 0.001 m3 to 
0.08 m3. 0.04 m3 is the cutoff between “large” and “small” objects. This range of 
values corresponds to the variety of UXO and clutter objects one would expect to 
encounter in the field. If different ranges of volumes are of interest, new training data 
can be created and the learning algorithms can be retrained to recognize different 
cutoff values. These spheroids are modeled using the spheroid model. The main 
difficulty in the generation of synthetic data is the amount of time needed to create 
enough objects for the training set. To generate data for 1800 objects, around two 
days are needed on a 3.6 GHz Pentium 4 PC. While the computational time is 
substantial, the creation of the training data occurs infrequently: once a learning 
method is trained using a training data set, it may be repeatedly used to classify any 
object without requiring any further significant calculation. In this regard, 
classification by machine learning is much faster than identification by optimization 
which must proceed through the entire lengthy optimization process for every 
measurement with every library member. 

 
The second type of object one can model is a heterogeneous object composed of 

two small spheroids that are coaxial and are separated by a distance of 1 mm as shown 
in Figure 3(b). Thus the object is a body of revolution (BOR). Since it is composed of 
two different materials, it is referred to as a BOR composite object. This object is 
always positioned so that the gap is fixed at the center of the coordinate system. The 
two spheroids that form a composite object are always given two different 

permeability and conductivity values: μ_r = 100 with σ = 2 ・ 106 S/m and μ_r = 1 

with σ = 2 ・ 107 S/m . The elongation of each spheroid is again random. The total 

volume of both spheroids ranges from 0.001 m3 to 0.08 m3. To obtain the response of 
a composite object, the magnetic field response of each spheroid is independently 
calculated and then summed. This study assumes that the interaction between the two 



spheroids does not affect the fields at the observation points which are at least a 
characteristic length away. As mentioned earlier, prior research has shown that this is 
a reasonable assumption even for closely spaced objects as long as one object is not 
permeable and the observation point is more than one characteristic object length 
away. 

 

Figure 3: Three different configurations of spheroids: single, BOR composite, and non BOR 

composite. The Bjk of these three objects are used for SVM and NN training and testing. 

 
The third type of object under study is shown in Figure 3(c). This object is similar 

to the BOR composite object except now the axes are parallel to each other and the 
z-axis. The gap between the two spheroids is again 1 mm and is positioned at the 
center of the coordinate system. This object is referred to as a non-BOR composite 
object. The excitation calculated by the model of the GEM-3 sensor is validated and 
shown to be faster than other methods. The GEM-3 instrument, the primary tool to 
produce EMI measurements, is manufactured by Geophex. As mentioned earlier, this 
instrument consists of two current loops in a bucking coil arrangement to generated 
primary magnetic field. The secondary magnetic field is captured by the current 
generated on a pickup coil in the center of the instrument by ∂B/∂t. However, the 
instrument reports this current in units that is proportional to the integral of magnetic 
flux over the receiver coil through a division by iω of the receiver coil current as 
implemented in hardware and post-processing. 
 
Retrieval of Bjk from Magnetic Fields 
 

For the training data and some of the test data, the Bjk are recovered from 
magnetic fields generated from a forward model. The magnetic fields are sampled at 
578 points in space, thus ensuring the problem is over determined. These points were 
distributed over a 2 m by 2 m grid at two elevations, 1.1 m and 1.3 m from the center 
of the spheroid. Figure 4 gives a graphical depiction of this arrangement. As before, 
only the lowest order modes are used, and they correspond to j = (0,0,1), (0,0,2), 
(0,1,1), (1,1,1), (0,0,3), (0,1,2), (1,1,2) and k = (0,0,0), (0,1,1), (1,1,1), (0,0,1), giving 
a total of 28 Bjk coefficients. Previous work demonstrated that these low order modes 



dominate the solution and are sufficient to reproduce it. The modes (0, 1, 1), (1, 1, 1), 
and (0, 0, 1) for k correspond to the magnetic dipole moments in x, y, and z directions 
for each excitation mode. Thus for each j, we are only solving for one more mode in 
addition to the three modes which correspond to the tri-axial dipole moments. Each 
Bjk is a complex value. But due to the limitations of the SVM algorithm, the real and 
imaginary parts are considered independent inputs when processing. For each object, 
we consider the Bjk at two frequencies: one high at 10950 Hz and one low at 210 Hz. 
This choice of frequencies is due to the nature of the EMI response: these frequency 
extremes can capture the largest variation in an object’s Inphase frequency response. 
Consequently, a vector of total length n = 112 serves as input for each object into the 
machine learning algorithm. 

 

Figure 4: Diagram of the measurement locations used in the inversion process. 

 

VIII. SVM Classification Results 

 
Large vs Small 

 
For all tests, the training data is a set of 1800 objects that are evenly divided into 

the two possible classes of large and small. The test data set has 200 members and is 
generated independently from the training data set. Adequate classification can be 
achieved with as few as 600 training examples for the simple case of single spheroid 
test objects with no additive noise. However, past experience demonstrate that the 



more complex objects presented in the subsequent sections require larger training sets 
to be optimally classified. Therefore, to permit reasonable comparison of the 
classification performance for different objects, all training sets have 1800 members. 
Many classification studies employ small training sets and larger test sets because the 
training set often derived from measurements and collected data are difficult to obtain. 
However, the forward model can provide large amounts of training data within a 
reasonable amount of time so larger training sets are used. In the first test, when 
single objects are classified by a trained SVM, only 2 objects are misclassified. Table 
1 is the confusion matrix that of the result of classifying the test data. SVM 
misclassifies 2 objects out of a total of 200, yielding an error of 1%. This error is used 
as the overall figure of merit as opposed to separate false positive and false negative 
rates. The errors made by SVM are concentrated close to the boundary between 
“large” and “small.” While the clustering of markers suggests some correlation 
between object size and overall Bjk magnitude, the relationship is not strict as we 
have discussed earlier. One can clearly see many large objects with lower Bjk than 
smaller objects and visa versa. Table 1 shows how SVM is able to generalize for 
different types of objects. There are three sets of test data and three sets of training 
data. All cases use 200 test objects and 1800 training objects. The lowest errors are 
generated when we train and test using the same type of object. When SVM is trained 
on single spheroids and tested on BOR composite objects or visa versa, it is able to 
generalize across these two object types to a certain degree. But it has difficulty 
classifying non-BOR objects when trained on any of the other two types or visa versa. 
In many cases an exact 50% error is obtained when SVM simply classified all objects 
as large or all objects as small. This unsuccessful classification may be due to the 
peculiarity of BOR objects in that they have values of zero for many specific Bjk 
coefficients while non-BOR objects do not have this constraint. Due to this very 
distinct difference in pattern, we expect SVM to have greater difficulty when 
generalizing across BOR and non-BOR objects. However, when SVM is given 
sufficient training data, it can adequately classify all objects. Table 2 shows the 
effects of training on a combination of single and BOR composite objects and a 
combination of all three types of objects. Remarkably, training on a combination of 
BOR composite and single objects allows SVM to be even more accurate in 
classifying BOR type objects. Furthermore, training with all three object types creates 
a more general SVM that can classify all objects with under 5% error. For any 
classification technique to be of practical use, it must be able to generalize for a wide 
range of objects. Thus, this use of dissimilar training and testing objects characterizes 
the generalizability of each trained learning method. Furthermore, mixed training sets, 
comprised of two or more types of objects, helps to illustrate how broadening the 
scope of the training sets improves generalizability and leads to overall robustness. 



 

Table 1: Table of Error for SVM Classification with Different Training and Testing Sets 

 

 
Table 2: Table of Error for SVM Classification with Mixed Training Sets 

 
 
SVM Results with Measurements 

 
The SVM classification is then tested using data from measured objects. The 

largest clutter item has a volume of 53 cubic centimeters. The largest UXO has a 
volume of roughly 2000 cubic cm while the smallest has a volume of about 700 cubic 
cm. Therefore, a new SVM training set with added Gaussian noise was created where 
the random spheroids had volumes within the range of 10 cm3 to 2500 cm3 with 300 
cm3 as the boundary between small and large. When the trained SVM was presented 
with Bjk drawn from measurements of these four objects, it correctly distinguished 



the very large objects from the small objects as shown by Table 3. 
 

 
Table 3: Confusion Matrix for SVM Classification of Clutter Items and UXO 

 

 
Table 4: Confusion Matrix for SVM Classification of BOR Items and non-BOR Items 

 
Distinguishing BOR composite objects from non-BOR composite objects is 

another area of investigation. The 1800 member training data has equal parts BOR 
and non-BOR composite spheroids. When trained on this data, SVM is very accurate 
in classifying a similarly generated 200 member test set as seen in Table 4. This 
accuracy is likely due to the distinct and easily distinguishable pattern for the Bjk of 
BOR objects. In BOR objects, only specific low order Bjk are non-zero 
 

IX. Conclusion 

 
The problem of classification by volumetric size and other physical 

characteristics of metallic objects using their EMI response are solved by 
decomposing that response into Bjk coefficients and then using a SVM and a NN to 
process those coefficients. The performance of each method is compared. Since one 
can demonstrate that there is no simple relationship between sizes of objects and the 
overall magnitude of their Bjk coefficients and magnetic polarizabilities, learning 
algorithms may be useful in classifying these objects. Furthermore, both learning 
algorithms are able to generalize for different object types with varying degrees of 
success. Both algorithms are capable of classifying single objects when trained on 
BOR composite objects or visa versa. However, both have difficulty classifying 
non-BOR objects when trained on any of the other two types or visa versa. One can 
hypothesize that this increased error is due to the single spheroid also being BOR so 
the non-BOR objects are very different from the other two types. When trained on all 
three types of objects, both the NN and the SVM are able to classify all objects with a 
good degree of accuracy. Furthermore, screening out non-BOR objects from BOR 
objects can be done with high accuracy so that, theoretically, classification based on 
size need not encompass both BOR and non-BOR objects. Some investigation is also 



conducted in classification by object heterogeneity or BOR characteristics with 
encouraging results. One aspect of machine learning which has not been included in 
this study is the topic of feature selection. The 28 low order Bjk at two selected 
frequencies are an educated guess for which Bjk are the most significant in 
classification. However, there may be more optimal subset of these Bjk values at the 
currently used frequencies or other frequencies which serve as better inputs into 
learning machines. This facet of machine learning research is called “feature 
selection” and may be a possible area for future work. Furthermore, there is a 
possibility of developing this technique into a real time application. Training each 
learning method is not instantaneous but still within the realm of being practical. Once 
a learning algorithm is trained, it can be used for an extended period of time until the 
user feels more accurate training data is available. Therefore training need only be a 
rare occurrence. Generating synthetic training data is the most time consuming part of 
our research, but this data can be stored and used as long as the researcher deems the 
training data to be valid. The actual classification of test data by SVM or NN is nearly 
instantaneous. Solving for the appropriate Bjk from measurements is also nearly 
instantaneous. Therefore, classification of a buried object as UXO or a piece of clutter 
can theoretically be obtained as quickly as the EMI measurements can be completed 
when the object position and orientation are known or are estimated within bounds 
such as those indicated earlier. In addition, both methods show an ability to generalize 
for noisy test data when trained with noisy data. This noise can be in the form of 
additive Gaussian noise or small variations in the position or orientation of the objects 
relative to the coordinate system. Training on noisy data helps to increase the 
accuracy of both learning algorithms when classifying objects with noisy Bjk. In the 
analysis on the effects of uncertainty in object position and orientation, one can see 
that large deviations in an object’s depth can significantly decrease the SVM 
classification accuracy. Since accuracy with noisy measured data is very critical for 
any classification method to be viable in the field, one can conclude that training must 
always be done using data with added noise and uncertainty to help increase the 
robustness of the classification method. However, this classification method and the 
DE optimization method have limitations in regards to the level of noise in the EMI 
responses. Various clutter suppression or signal separation methods have been 
advanced. Integrating such methods into these inversion algorithms will further the 
work in realizing a practical, field deployable solution to the difficult problem of 
UXO inversion. 
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